Arista-20 Years of Growth and Innovation
Today marks the 20th anniversary of Arista! Over that time, our company has grown from nothing to #1 in Data Center Ethernet, a highly profitable...
The evolution of WAN architectures has historically paralleled that of application architectures. When we primarily connected terminals to mainframes, the WAN architecture was largely point-to-point links connecting back to data center facilities. As traffic converged to remove OpEx-intensive parallel network structures, the WAN evolved to architectures that enabled site-to-site connectivity in a full mesh or configurable mesh and then enabled multi-tenancy for carrier cost optimization.
Today’s application architectures are massively deconstructed and distributed. We often see enterprise architectures where a single workflow requires dozens of interconnected applications and systems often running in SaaS providers, the public clouds, and on-premises data centers while supporting client connectivity from critical sites, campus locations, and users from their homes and all over the world. This, more than anything, is dictating an evolution of the WAN architecture to one that embraces and optimizes for:
The other inherent challenge is that routed WAN networks, based on traditional federated routing protocols and usually manually configured via the CLI, are still the most predominant type of system in enterprise and carrier wide area networks. The evolution of SD-WAN as a specific product category has often resulted in proprietary systems with limited interoperability that are often designed to create single-vendor lock-in.
In reality, SD-WAN is a set of operationally valuable features that have made WAN networks easier to deploy, provision, and operate - but at Arista, we believe that these features and capabilities do not require proprietary vendor lock-in and can be delivered as part of a routed WAN system that gives customers a choice, a viable transition plan, and a better systems architecture while delivering a consistent operational experience across the data center, cloud, campus, and now the Routed WAN.
When we released our Cognitive Campus products our strong client interest reaffirmed our design decision to use Arista EOS, our Network Data Lake (NetDL), and our CloudVision management platform as the foundation for our expansion into a new network transport domain. We applied the same principles as we organically designed and engineered our WAN Routing System:
Three Key Features: Arista WAN Routing System
Dual Modality Design - we recognize that there are technical, architectural and market requirements for traditional federated routing protocols building both public and private networks. At the same time, there are equivalent requirements for systems that can have their configurations procedurally rendered, tested, and automatically deployed. We designed our new systems to operate in both a classic and stand-alone routing model or in a more ‘SD-WAN’ model.
Adaptive Virtual Topologies - defined and executed within EOS and provisioned and traffic engineered automatically in conjunction with CloudVision Pathfinder are AVTs: Adaptive Virtual Topologies. An AVT is a logical abstraction within the Arista Routed WAN Architecture that combines:
IP Core and Aggregation Path Computation - a constant question we heard from network operators over the past decade was,
“How can SD-WAN self-heal when there is a service disruption from a branch to the aggregation site, and yet multi-million-dollar routers in our core will forward traffic over a link experiencing 30% packet loss and never report an error?”
We took this feedback and client need to heart and developed an IP-based path computation capability into CloudVision Pathfinder that enables self-healing, dynamic pathing, and traffic engineering not only for critical sites back to aggregation systems but also between the core, aggregation, cloud, and transit hub environments.
Interesting Use Cases
We are seeing a myriad of use cases within our clients - from AutoVPN requirements scaling out site-to-site IPsec cryptographically assured tunnels to Internet Peering routers with very large tables and numbers of peer connections to EVPN Route Servers/Reflectors deployed on systems with extremely scalable control planes supporting over ten million routes.
One use-case we are very excited about, that is generally available and in production deployments today at several forward-looking clients is our Transit Hub implementation which was developed with Equinix. In this deployment we are replacing traditional aggregation routers with scalable routing systems deployed within Equinix’s global carrier-neutral and cloud-adjacent Equinix International Business Exchange™ (IBX®) data centers. By geographically distributing Transit Hubs and coupled with the CV Pathfinder Path Computation Engine clients are able to take advantage of using all of the Internet peering links available through Equinix Fabric™ but also their high-scale cloud onramps to be able to utilize the public cloud providers backbones as viable transit offerings on demand.
Innovation
Innovation is a constant at Arista, we’re continuing to develop products, technologies, and architectures that transform the networking experience for engineers and operators. We’ve been listening to our customers for almost fifteen years asking for an alternative that can provide an end-to-end solution with a consistent network O/S, reliable software, modern network engineering architectures, and a modern operating model. Our innovation journey will never be complete, but we are delighted to share these new capabilities with you.
Today marks the 20th anniversary of Arista! Over that time, our company has grown from nothing to #1 in Data Center Ethernet, a highly profitable...
We are excited to share that Meta has deployed the Arista 7700R4 Distributed Etherlink Switch (DES) for its latest Ethernet-based AI cluster. It's...
As I think about the evolution of the CloudVisionⓇ platform over the last 10 years, and our latest announcement today, I’m reminded of three...